

Disentangling Past-Future Modeling in Sequential Recommendation via Dual Networks

Hengyu Zhang* zhang-hy21@mails.tsinghua.edu.cn Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen, China

> Zhicheng He hezhicheng9@huawei.com Huawei Noah's Ark Lab Shenzhen, China

Bo Chen chenbo116@huawei.com Huawei Noah's Ark Lab Shenzhen, China Enming Yuan* yem19@mails.tsinghua.edu.cn Institute for Interdisciplinary Information Sciences,Tsinghua University Beijing, China

Jiarui Qin qinjr@icloud.com Shanghai Jiao Tong University Shanghai, China

Xiu Li[†] li.xiu@sz.tsinghua.edu.cn Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen, China

CIKM 2022

Wei Guo guowei67@huawei.com Huawei Noah's Ark Lab Shenzhen, China

Huifeng Guo huifeng.guo@huawei.com Huawei Noah's Ark Lab Shenzhen, China

Ruiming Tang[†] tangruiming@huawei.com Huawei Noah's Ark Lab Shenzhen, China

Reported by Minqin Li

Introduction

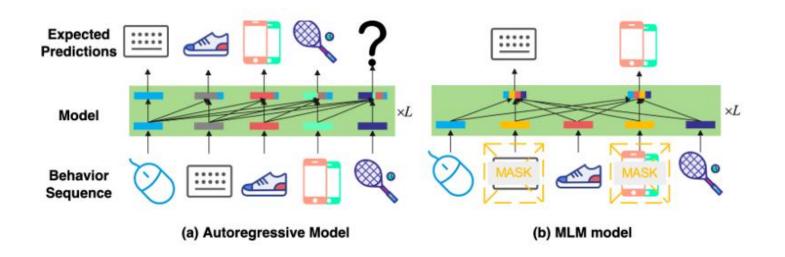


Figure 1: Illustration of common sequential recommendation models.

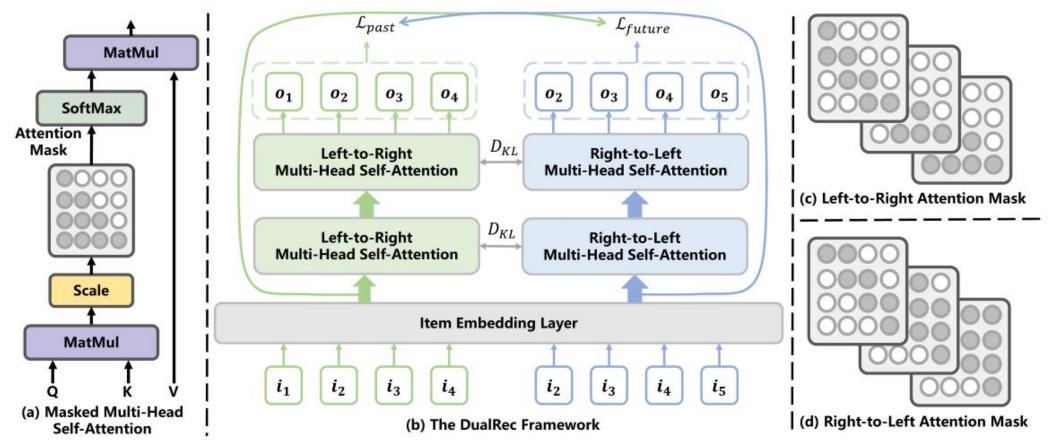
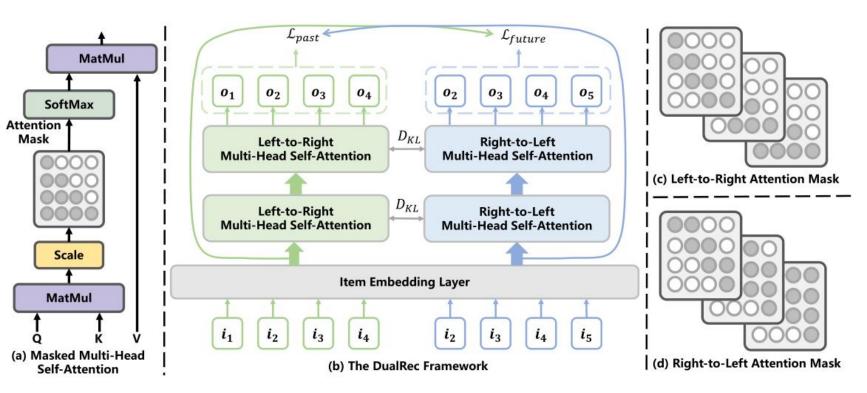


Figure 2: Model architecture of the proposed DualRec framework. (a) Illustration of masked multi-head self-attention. The shaded nodes are visible. (b) Overall structure of the dual network, with the past encoder on the left and the future encoder on the right. Past and future encoders are associated by the shared embedding layer and bi-directional information transferring using KL divergences. (c) and (d) are the attention masks from left to right in the past encoder and from right to left in the future encoder, respectively, and the time windows corresponding to each attention head are different, i.e., multi-scale.

Method



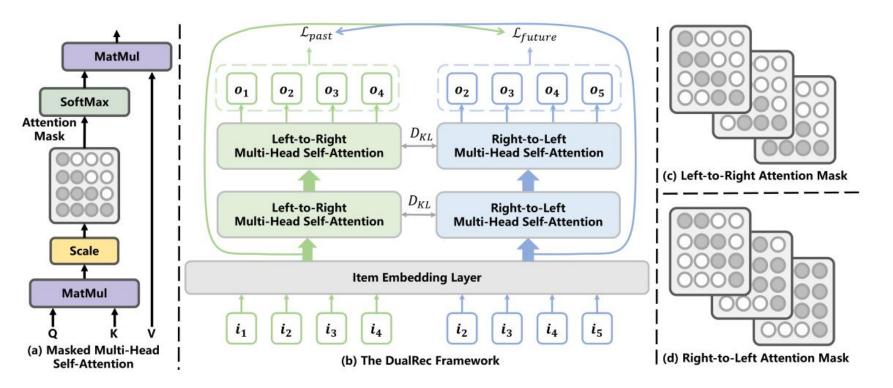
$$p(i_{T_u+1}^{(u)} = i^{(c)} | \mathcal{S}^{(u)}) = \text{SeqRecModel}(\mathcal{S}^{(u)}, i^{(c)})$$
 (1)

$$\mathbf{X}^{(0)} = (\mathbf{e}_1, \cdots, \mathbf{e}_n), \ \mathbf{e}_k = \text{LookUp}(i_k, \mathbf{E}^{\mathcal{I}})$$
(2)

$$\mathbf{p}(i, j) = \text{LookUp}(\text{Dist}(i, j), \mathbf{E}^{\mathcal{P}})$$
(3)

$$\mathbf{head}_i = softmax \left(\frac{(\mathbf{X}\mathbf{W}_i^Q) \cdot (\mathbf{X}\mathbf{W}_i^K)^{\mathsf{T}}}{\sqrt{d/h}} \right) (\mathbf{X}\mathbf{W}_i^V) \tag{4}$$

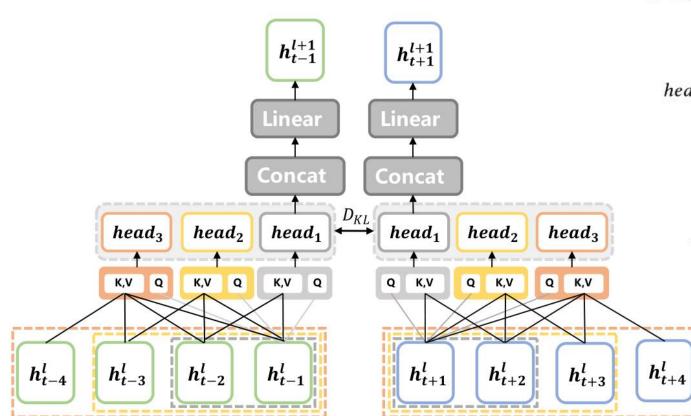
Method



$$MSA(\mathbf{X}) = Concat(head_i, head_2, ..., head_h) \mathbf{W}^o \quad (5) \qquad \mathbf{H}^{(l)} = LayerNorm\left(\mathbf{X}^{(l-1)} + MSA(\mathbf{X}^{(l-1)})\right),$$

$$PFF(\mathbf{X}) = FC(\sigma(FC(\mathbf{X}))), FC(\mathbf{X}) = \mathbf{X}\mathbf{W} + \mathbf{b} \quad (6) \qquad \mathbf{X}^{(l)} = LayerNorm\left(\mathbf{H}^{(l)} + PFF(\mathbf{H}^{(l)})\right),$$

$$(7)$$



$$WS(i) = \begin{cases} i+1 & \text{if } i \leq \frac{h}{2} \\ \frac{h}{2} + \left[\frac{\exp(i-\frac{h}{2})}{\exp\frac{h}{2}} \cdot \left(n - \frac{h}{2}\right) \right] & \text{if } i > \frac{h}{2} \end{cases}, \quad i = 1 \cdots h \quad (8)$$
$$head_{i,j}(\mathbf{X}, \sigma) = softmax \left(\frac{(\mathbf{XW}_i^Q)_j \cdot S_j \left(\mathbf{XW}_i^K, \sigma\right)^\top}{\sqrt{d/h}} \right) \cdot S_j \left(\mathbf{XW}_i^V, \sigma\right),$$
$$S_j(\mathbf{X}, \sigma) = \left[\mathbf{X}_{j-\sigma}, \cdots, \mathbf{X}_j \right], \tag{9}$$

$$\mathcal{L}_{reg} = \sum_{i=1}^{h} \frac{1}{2} \left(D_{KL}(\mathbf{head}_{i}^{p} || \mathbf{head}_{i}^{f}) + D_{KL}(\mathbf{head}_{i}^{f} || \mathbf{head}_{i}^{p}) \right),$$
(10)

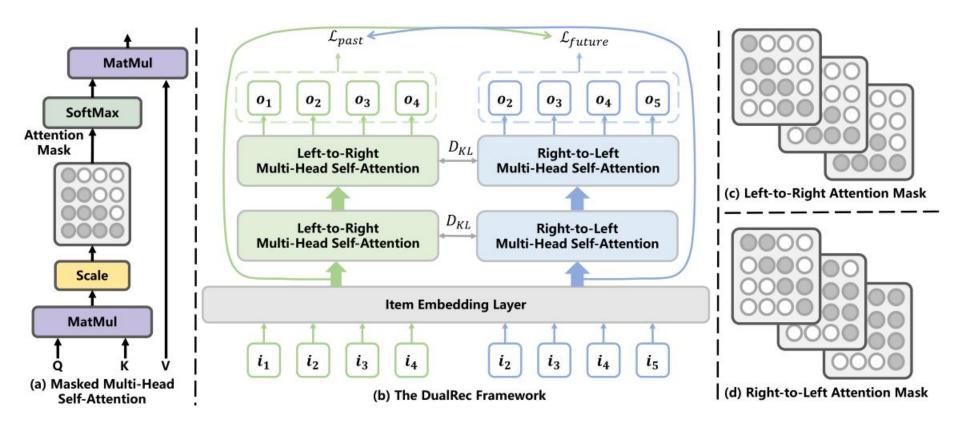
$$D_{KL}(p||q) = \sum_{i} p_i \log \frac{p_i}{q_i},\tag{11}$$

Figure 3: Illustration of interest-level knowledge transferring between past and future information.

 \mathbf{s}_t^p

 $\hat{\mathbf{y}}_t^p$

Method



$$= \mathbf{o}_{t-1}^{p} \cdot \mathbf{E}^{\mathbf{I}^{\top}}, \quad \mathbf{s}_{t}^{f} = \mathbf{o}_{t+1}^{f} \cdot \mathbf{E}^{\mathbf{I}^{\top}}$$
(12) $\mathcal{L} = \alpha \mathcal{L}_{past} + (1-\alpha) \mathcal{L}_{future} + \beta \mathcal{L}_{reg}$
$$= softmax(\mathbf{s}_{t}^{p}), \quad \hat{\mathbf{y}}_{t}^{f} = softmax(\mathbf{s}_{t}^{f})$$
(13) $= -\alpha \sum_{t=2}^{n-1} \text{OneHot}(i_{t}^{\star}) \log \hat{\mathbf{y}}_{t}^{p} - (1-\alpha) \sum_{t=2}^{n-1} \text{OneHot}(i_{t}^{\star}) \log \hat{\mathbf{y}}_{t}^{f} + \beta \mathcal{L}_{reg},$ (14)

Table 1: Dataset Statistics

Dataset	# Users	# Items	# Interactions	Density
Beauty	22,363	12,101	198,502	0.07%
Sports	25,598	18,357	296,337	0.05%
Toys	19,412	11,924	167,597	0.07%
Yelp	30,431	20,033	316,354	0.05%

Table 2: Performance comparison using different methods on four popular sequential datasets. The best performance and the second-best performance methods are denoted in bold and underlined fonts respectively. The "*" mark denotes the statistical significance (p < 0.05) of comparing DualRec with the strongest baseline results and the "Improv." column represents the relative improvement of DualRec over the strongest baseline.

Datasets	Metric	GRU4Rec	Caser	HGN	RepeatNet	CLEA	SASRec	$S3-Rec_{MIP}$	BERT4Rec	SRGNN	GCSAN	FMLP-Rec	DualRec	Improv.
	HR@1	0.1519	0.1337	0.1683	0.1578	0.1325	0.1907	0.1678	0.1531	0.1729	0.1973	0.2051	0.2289*	+11.60%
	HR@5	0.3612	0.3032	0.3544	0.3268	0.3305	0.4036	0.3710	0.3640	0.3518	0.3678	0.4103	0.4241^{*}	+3.24%
Roouty	NDCG5	0.2608	0.2219	0.2656	0.2455	0.2353	0.3022	0.2735	0.2622	0.2660	0.2864	0.3133	0.3320*	+5.97%
Beauty	HR@10	0.4657	0.3942	0.4503	0.4205	0.4426	0.5043	0.4749	0.4739	0.4484	0.4542	0.5070	0.5190^{*}	+2.37%
	NDCG@10	0.2944	0.2512	0.2965	0.2757	0.2715	0.3358	0.3069	0.2975	0.2971	0.3143	0.3443	0.3626*	+5.32%
	MRR	0.2593	0.2263	0.2669	0.2498	0.2376	0.2990	0.2731	0.2614	0.2686	0.2882	<u>0.3102</u>	0.3302*	+6.45%
	HR@1	0.1366	0.1135	0.1428	0.1334	0.1114	0.1676	0.1107	0.1255	0.1419	0.1669	0.1722	0.1947*	+13.07%
	HR@5	0.3552	0.2866	0.3349	0.3162	0.3041	0.3919	0.3141	0.3375	0.3367	0.3588	0.3886	0.4127^{*}	+5.31%
Charta	NDCG5	0.2487	0.2020	0.2420	0.2274	0.2096	0.2823	0.2143	0.2341	0.2418	0.2658	0.2839	0.3080*	+8.49%
Sports	HR@10	0.4853	0.4014	0.4551	0.4324	0.4274	0.5169	0.4491	0.4772	0.4545	0.4737	0.5098	0.5383*	+4.14%
	NDCG@10	0.2907	0.2390	0.2806	0.2649	0.2493	0.3244	0.2578	0.2775	0.2799	0.3029	0.3231	0.3485^{*}	+7.43%
	MRR	0.2493	0.2100	0.2469	0.2334	0.2156	0.2838	0.2203	0.2378	0.2461	0.2691	0.2830	0.3078*	+8.47%
	HR@1	0.1303	0.1114	0.1504	0.1333	0.1104	0.1760	0.1825	0.1262	0.1600	0.1996	0.2003	0.2268*	+13.23%
	HR@5	0.3526	0.2614	0.3276	0.3001	0.3055	0.3975	0.3892	0.3344	0.3389	0.3613	0.4010	0.4152^{*}	+3.54%
т	NDCG5	0.2444	0.1885	0.2423	0.2192	0.2102	0.2907	0.2903	0.2327	0.2528	0.2836	0.3055	0.3253^{*}	+6.48%
Toys	HR@10	0.4691	0.3540	0.4211	0.4015	0.4207	0.5034	0.4935	0.4493	0.4413	0.4509	0.4977	0.5145^{*}	+2.21%
	NDCG@10	0.2820	0.2183	0.2724	0.2517	0.2473	0.3271	0.3239	0.2698	0.2857	0.3125	0.3367	0.3573^{*}	+6.12%
	MRR	0.2424	0.1967	0.2454	0.2253	0.2138	0.2877	0.2890	0.2338	0.2566	0.2871	0.3034	0.3256*	+7.32%
	HR@1	0.1970	0.2188	0.2428	0.2341	0.2102	0.2327	0.2250	0.2405	0.2176	0.2493	0.2625	0.2893*	+10.21%
N	HR@5	0.5788	0.5111	0.5768	0.5357	0.5707	0.5949	0.5978	0.5976	0.5442	0.5725	0.6246	0.6328*	+1.32%
	NDCG5	0.3933	0.3696	0.4162	0.3894	0.3955	0.4198	0.4171	0.4252	0.3860	0.4162	0.4507	0.4681^{*}	+3.93%
Yelp	HR@10	0.5788	0.6661	0.7411	0.6897	0.7473	0.7722	0.7764	0.7597	0.7096	0.7371	0.7699	0.7896*	+2.25%
	NDCG@10	0.4511	0.4198	0.4695	0.4393	0.4527	0.4790	0.4751	0.4778	0.4395	0.4696	0.4981	0.5190*	+4.20%
	MRR	0.3684	0.3595	0.3998	0.3769	0.3751	0.3994	0.3938	0.4026	0.3711	0.4006	0.4236	0.4466*	+5.43%

Table 3: Ablation study results of different consisting components in DualRec.

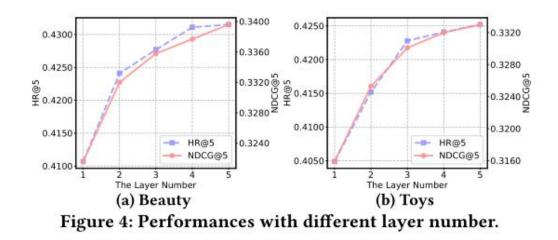
Mailala	В	eauty	S	ports		Гoys	Yelp		
Methods	HR@5	NDCG@5	HR@5	NDCG@5	HR@5	NDCG@5	HR@5	NDCG@5	
DualRec	0.4241	0.3320	0.4127	0.3080	0.4152	0.3253	0.6328	0.4681	
DualRec w/o DE	0.4154	0.3251	0.4037	0.3016	0.4098	0.3202	0.6273	0.4610	
DualRec w/o BIT	0.4235	0.3311	0.4102	0.3055	0.4122	0.3246	0.6284	0.4658	
DualRec w/o RPE	0.4216	0.3306	0.4093	0.3044	0.413	0.3234	0.6320	0.4677	
DualRec w/o LN	0.4086	0.3075	0.4097	0.3031	0.3987	0.2963	0.6321	0.4653	
DualRec w/o RC	0.3653	0.2642	0.3720	0.2632	0.3388	0.2360	0.5751	0.4052	

Table 4: Compatibility Analysis with Different Backbones on four sequential datasets. Prefix "Dual" indicates the corresponding dual network model of backbone, and "BIT" means bi-directional information transferring.

Datasets		Beauty			Sports			Toys			Yelp	
Model	HR@5	NDCG@5	MRR									
SASRec	0.4036	0.3022	0.2990	0.3919	0.2823	0.2838	0.3975	0.2907	0.2877	0.5949	0.4198	0.3994
DualSASRec	0.4178	0.3147	0.3108	0.4055	0.2946	0.2936	0.4068	0.3038	0.3009	0.6198	0.4415	0.4183
DualSASRec+BIT	0.4223	0.3199	0.3153	0.4111	0.2985	0.2961	0.4111	0.3084	0.3050	0.6199	0.4457	0.4239
GRU4Rec	0.3612	0.2608	0.2593	0.3552	0.2487	0.2493	0.3526	0.2444	0.2424	0.5788	0.3933	0.3684
DualGRU4Rec	0.3779	0.2726	0.2696	0.3681	0.2578	0.2575	0.3532	0.2454	0.2443	0.5869	0.4036	0.3803
DualGRU4Rec+BIT	0.3866	0.2826	0.2798	0.3768	0.2638	0.2624	0.3679	0.2567	0.2535	0.5988	0.4141	0.3888
FMLP-Rec	0.4103	0.3133	0.3102	0.3886	0.2839	0.2830	0.4010	0.3055	0.3034	0.6246	0.4507	0.4236
DualFMLP-Rec	0.4172	0.3200	0.3170	0.3937	0.2889	0.2878	0.4041	0.3084	0.3063	0.6351	0.4708	0.4454
DualFMLP-Rec+BIT	0.4210	0.3240	0.3208	0.4002	0.2940	0.2914	0.4067	0.3109	0.3087	0.6343	0.4668	0.4407

Table 5: The performance of Past-Only Model, Future-Only Model, and DualRec on four datasets.

Datasets	Metric	Past-Only	Future-Only	DualRec
D .	HR@5	0.4166	0.3833	0.4235
Beauty	NDCG@5	0.3272	0.2912	0.3311
Consulta	HR@5	0.4061	0.3786	0.4102
Sports	NDCG@5	0.3027	0.2766	0.3055
Toys	HR@5	0.4085	0.3601	0.4122
	NDCG@5	0.3212	0.2761	0.3246
Yelp	HR@5	0.6276	0.6215	0.6284
	NDCG@5	0.4628	0.4576	0.4658



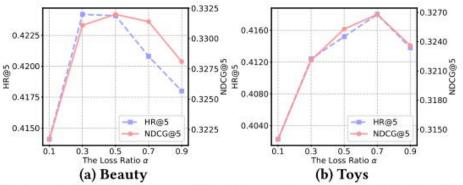


Figure 6: Performances with different loss ratio of dual network model.

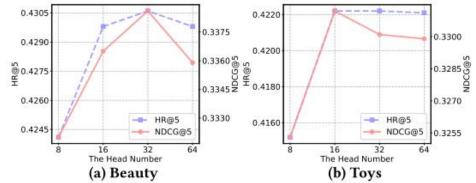


Figure 5: Performances with different attention head number.

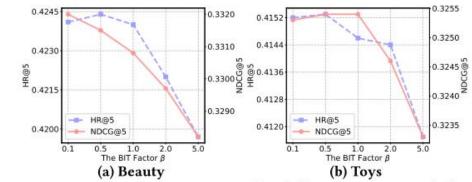


Figure 7: Performances with different factor of bidirectional information transferring loss.

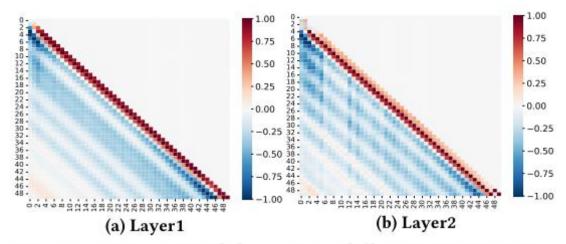


Figure 8: Heat maps of the average difference in attention score per layer between the past encoder in the DualRec and the Past-Only Model on the Yelp test dataset (red means the average attention scores in the DualRec are higher than those in the Past-Only Model; and blue indicates the opposite case). The coordinates in the figure indicate the sequence index.

